Server IP : 127.0.0.2 / Your IP : 3.16.164.60 Web Server : Apache/2.4.18 (Ubuntu) System : User : www-data ( ) PHP Version : 7.0.33-0ubuntu0.16.04.16 Disable Function : disk_free_space,disk_total_space,diskfreespace,dl,exec,fpaththru,getmyuid,getmypid,highlight_file,ignore_user_abord,leak,listen,link,opcache_get_configuration,opcache_get_status,passthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,php_uname,phpinfo,posix_ctermid,posix_getcwd,posix_getegid,posix_geteuid,posix_getgid,posix_getgrgid,posix_getgrnam,posix_getgroups,posix_getlogin,posix_getpgid,posix_getpgrp,posix_getpid,posix,_getppid,posix_getpwnam,posix_getpwuid,posix_getrlimit,posix_getsid,posix_getuid,posix_isatty,posix_kill,posix_mkfifo,posix_setegid,posix_seteuid,posix_setgid,posix_setpgid,posix_setsid,posix_setuid,posix_times,posix_ttyname,posix_uname,pclose,popen,proc_open,proc_close,proc_get_status,proc_nice,proc_terminate,shell_exec,source,show_source,system,virtual MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /lib/modules/4.4.0-1085-aws/build/include/linux/ |
Upload File : |
#ifndef _LINUX_HASH_H #define _LINUX_HASH_H /* Fast hashing routine for ints, longs and pointers. (C) 2002 Nadia Yvette Chambers, IBM */ /* * Knuth recommends primes in approximately golden ratio to the maximum * integer representable by a machine word for multiplicative hashing. * Chuck Lever verified the effectiveness of this technique: * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf * * These primes are chosen to be bit-sparse, that is operations on * them can use shifts and additions instead of multiplications for * machines where multiplications are slow. */ #include <asm/types.h> #include <linux/compiler.h> /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ #define GOLDEN_RATIO_PRIME_32 0x9e370001UL /* 2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */ #define GOLDEN_RATIO_PRIME_64 0x9e37fffffffc0001UL #if BITS_PER_LONG == 32 #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_PRIME_32 #define hash_long(val, bits) hash_32(val, bits) #elif BITS_PER_LONG == 64 #define hash_long(val, bits) hash_64(val, bits) #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_PRIME_64 #else #error Wordsize not 32 or 64 #endif /* * The above primes are actively bad for hashing, since they are * too sparse. The 32-bit one is mostly ok, the 64-bit one causes * real problems. Besides, the "prime" part is pointless for the * multiplicative hash. * * Although a random odd number will do, it turns out that the golden * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice * properties. * * These are the negative, (1 - phi) = (phi^2) = (3 - sqrt(5))/2. * (See Knuth vol 3, section 6.4, exercise 9.) */ #define GOLDEN_RATIO_32 0x61C88647 #define GOLDEN_RATIO_64 0x61C8864680B583EBull static __always_inline u64 hash_64(u64 val, unsigned int bits) { u64 hash = val; #if BITS_PER_LONG == 64 hash = hash * GOLDEN_RATIO_64; #else /* Sigh, gcc can't optimise this alone like it does for 32 bits. */ u64 n = hash; n <<= 18; hash -= n; n <<= 33; hash -= n; n <<= 3; hash += n; n <<= 3; hash -= n; n <<= 4; hash += n; n <<= 2; hash += n; #endif /* High bits are more random, so use them. */ return hash >> (64 - bits); } static inline u32 hash_32(u32 val, unsigned int bits) { /* On some cpus multiply is faster, on others gcc will do shifts */ u32 hash = val * GOLDEN_RATIO_PRIME_32; /* High bits are more random, so use them. */ return hash >> (32 - bits); } static inline unsigned long hash_ptr(const void *ptr, unsigned int bits) { return hash_long((unsigned long)ptr, bits); } static inline u32 hash32_ptr(const void *ptr) { unsigned long val = (unsigned long)ptr; #if BITS_PER_LONG == 64 val ^= (val >> 32); #endif return (u32)val; } #endif /* _LINUX_HASH_H */